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A B S T R A C T

With the continuous advancement of data science and machine learning, temporal link prediction has emerged
as a crucial aspect of dynamic network analysis, providing significant research and application potential
across various domains. While deep learning techniques have achieved remarkable results in temporal link
prediction, most existing studies have focused on discrete model frameworks. These frameworks face limitations
in capturing deep structural features and effectively aggregating temporal information. To address these
limitations, we draw inspiration from neural differential equations to propose a Continuous Temporal Graph
Neural Differential Equation (CTGNDE) network model for temporal link prediction. Specifically, we design
a spatial graph Ordinary Differential Equation (ODE) to capture the spatial correlations inherent in complex
spatiotemporal information. Then we employ Neural Controlled Differential Equation (Neural CDE) to learn
complex evolution patterns and effectively aggregate temporal information. Finally, we characterize completely
continuous and more accurate hidden state trajectories by coupling spatial and temporal messages. Experiments
conducted on 10 real-world network datasets validated the superior performance of the CTGNDE model over
the state-of-the-art baselines.
1. Introduction

Graph is a natural means to model complex systems with interre-
lated components. Owing to its ability to capture and model diverse
relationships in real-world networks, graph structure appears in diverse
fields such as social networks [1], biological systems [2], and trans-
portation networks [3], etc. In view of this, the problem of temporal
link prediction arises within such complex networks. Temporal link
prediction models are generally used to predict future connections
at specific timestamps based on the network’s existing topology and
node attributes. The prediction of future connection patterns not only
helps us better understand the evolution of network structures but
also guides us in making better decisions. Consequently, link pre-
diction models have numerous applications, including social network
analysis [4], coauthor network analysis [5], drug discovery [6], and
recommendation systems [7].
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In recent years, with the efforts of researchers, various methods
based on Graph Neural Network (GNN) models have been proposed
to solve the problem of link prediction [8–10]. However, it is note-
worthy that the majority of existing methods tend to concentrate
solely on static graphs. In practice, real-world networks frequently
exhibit inherent dynamics, as observed in domains such as social and
transportation networks. In these scenarios, both network structures
and node attributes undergo dynamic and often imperceptible changes
over time. In a dynamic network, the interdependence between the
time and space dimensions can substantially impact the connections
between nodes. For instance, the attributes of a node at a specific
timestamp may be influenced by the attributes of its neighboring nodes
at the same timestamp, and the connections between nodes can evolve
over time. Consequently, it is important to develop a comprehensive
temporal network link prediction approach that can effectively capture
spatiotemporal dependency, allowing for the accurate modeling of
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Fig. 1. A schematic diagram of our method, where 𝑍 denotes the node embedding.
For node objects in a dynamic graph, their embeddings not only continuously evolve
with timesteps but also continuously change with the depth of the spatial structure at
each timestep.

both the structural properties and temporal characteristics of network
evolution.

Numerous methodologies have been proposed to address the prob-
lem of temporal link prediction using deep learning techniques. These
methodologies are designed to capture temporal and spatial patterns,
with a notable emphasis on the amalgamation of a GNN with a Re-
current Neural Network (RNN) [11–13]. While these methods exhibit
strong nonlinear modeling ability and can effectively handle high-
dimensional, nonlinear, and complex dynamic graph data, they still
face some challenges that hinder them from accurately predicting
links. On the one hand, the prevalent snapshot-based approach in
existing research dissects dynamic networks into multiple chronological
snapshots. Consequently, the temporal features extracted often have a
discretized nature. However, it is important to acknowledge that the
evolution of spatiotemporal graphs fundamentally unfolds as a con-
tinuous dynamic process. Furthermore, a notable gap in most existing
studies is the oversight of structural continuity within models, which
is illustrated in Fig. 1. Discrete neural architectures may fall short in
capturing finer-grained information and could potentially omit crucial
details in the evolution of links. This oversight has been empirically
shown to result in heightened numerical inaccuracies and a parallel
escalation in model complexity [14,15]. On the other hand, most
graph neural network-based approaches encounter the challenge of
oversmoothing [16], which limits the network’s ability to obtain deeper
and richer spatial structural features and weakens the representation
ability of GNN.

In this study, we propose Continuous Temporal Graph Neural Dif-
ferential Equation Network (CTGNDE) to address the aforementioned
problems. Inspired by the combination of differential equations and
deep learning [14,15,17,18], we adopt neural differential equations
to construct a continuous-depth model so as to capture the contin-
uous evolution of dynamic graphs. Specifically, we formulate node
representation on dynamic graphs as a coupling of temporal evolution
information and spatial structural features. Our proposed model has
two main components: spatial graph Ordinary Differential Equation
(ODE) and temporal graph ODE. The spatial graph ODE component
aims to capture the dynamic spatial correlations among nodes. This
component focuses on the aggregation of spatial structural features and
consists of two stages: feature propagation and feature transformation.
Furthermore, we employ a continuous pattern and a shared global
parameter matrix to aggregate the neighbor structural information of
nodes, thus capturing deeper information. In addition, for the temporal
graph ODE component, we incorporate richer temporal information
by aggregating the current and historical moment information of each
node through Neural Controlled Differential Equations (Neural CDEs)
so as to capture long-range temporal correlations. Notably, our model
is continuous in both the temporal and spatial levels of hidden states.
2

Our contributions can be summarized as follows:
• We propose CTGNDE, a novel framework for completely continu-
ous temporal graph neural networks. This framework effectively
characterizes the hidden dynamics of nodes in both continu-
ous space and continuous time, capturing and coupling the rich
temporal and spatial messages from hidden spaces.

• We design a spatial graph ODE component that captures intricate
spatial structural features while taking into account spatiotempo-
ral correlations. Experimental results indicate the effectiveness of
our approach in handling complex spatiotemporal dependencies
and addressing the challenges of oversmoothing.

• We conduct extensive experiments on 10 real-world datasets and
show that our proposed method outperforms other baseline mod-
els, thereby demonstrating the effectiveness of our approach.

2. Related works

2.1. Temporal link prediction

Temporal link prediction is an essential task in network analysis
that has gained considerable attention in recent years. While early
approaches, such as time series and probabilistic graphical models [19],
were successful in some cases, they often relied on strong assumptions
about the underlying distribution of the temporal evolution of the link
structure and may have limited expressiveness. In recent years, deep
learning-based methods have demonstrated promising performance by
leveraging the power of neural networks to model complex temporal
dependencies. In particular, graph neural networks, especially graph
convolutional neural networks [20], have been successfully applied
to temporal link prediction. For example, EvolveGCN [12] introduces
an adaptive mechanism to update the Graph Convolutional Network
(GCN) weights over time to handle the dynamic nature of the evolv-
ing networks. GCN-GRU [11] and VGRNN [13] combine GCNs with
gated recurrent units to model the temporal information of the link
sequences. Another popular approach is the use of temporal attention
mechanisms in GNNs. For instance, TGAT [21] employs a self-attention
mechanism to develop a time encoding technique that learns the tempo-
ral feature interactions. TARGAT [22] uses time-aware relational graph
attention layers and temporal transformer layers to effectively handle
the task of temporal knowledge graph embedding. Although these mod-
els have achieved considerable success in the domain of graph-based
tasks, they may exhibit certain structural constraints, notably charac-
terized by the discontinuous nature of information propagation. This
phenomenon perhaps gives rise to the partial loss and incompleteness
of vital information within the framework.

2.2. Neural differential equation

The integration of dynamic systems and deep learning has emerged
as a compelling research area in machine learning. Recently, neu-
ral differential equations have gained attention as a powerful tool
for modeling continuous-time dynamic systems. The Neural Ordinary
Differential Equation (Neural ODE) proposed by Chen et al. [14],
characterizes the derivative of a hidden state with a neural network
parameterized differential equation. The Neural ODE enables the con-
struction of a continuity hierarchy and parameters, yielding promising
results in various applications [23–25]. Despite its success, the Neural
ODE framework has some limitations, such as sensitivity to initial
conditions. To address this challenge, the Neural CDE [17] was pro-
posed, which adjusts the trajectory of the solutions based on subsequent
observations, enhancing their robustness to perturbations in the ini-
tial conditions. Furthermore, the Augmented Neural ODE (ANODE)
model [26] adds extra dimensions to the hidden state of the network to
model additional variables, and such an addition improves the accuracy
and generalization of the model. Another variant, the Second Order
Neural ODE [27], employs a second-order ODE to describe the evolu-
tion of the second derivative of the hidden state. This approach captures
more complex temporal dynamics and enhances the interpretation of
ANODE.
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2.3. Graph neural ordinary differential equations

Graph neural networks have become a powerful framework for
learning graph representations. With the proposal of Neural ODE,
researchers have extended the GNN framework to operate on contin-
uously evolving graphs. Graph neural ordinary Differential Equations
(GDEs) [28] enable modeling of dynamic graph-structured data by
formulating the evolution of the graph state as a continuous-time
ODE. To further improve the expressiveness of GNNs, inspired by
Pagerank- and diffusion-based methods, the Continuous Graph Neu-
ral Network (CGNN) [18] was proposed, which extends the existing
discrete GNN and describes the continuous dynamics of node rep-
resentation. Experimental results have indicated that this method is
robust to oversmoothing. Furthermore, several continuous graph ODE
models have been proposed for traffic flow prediction. For instance, the
Multivariate Time series with dynamic Graph neural Ordinary Differ-
ential Equations (MTGODE) [15] designs two coupled ODEs for unified
spatiotemporal message passing to learn the fully continuous latent spa-
tiotemporal dynamics of the time series. In addition, the spatiotemporal
Graph Ordinary Differential Equation Networks (STGODE) [29] were
introduced to capture spatiotemporal dynamics through a tensor-based
ODE.

3. Methodology

3.1. Problem formulation

In the temporal link prediction task, we are often given a dynamic
graph  represented as a sequence of graph snapshots over time,  =
{𝐺1, 𝐺2,… , 𝐺𝑇 }, where 𝐺𝑡 = (𝑡, 𝑡) denotes the graph at time 𝑡 ∈
{1, 2,… , 𝑇 } with 𝑡 and 𝑡 ⊆ 𝑡 × 𝑡 being the corresponding node
nd edge sets, respectively. To represent node attributes, we use a
eature matrix 𝑋𝑡 ∈ R|𝑡|×𝑚, where each node in 𝑡 is encoded as a

predefined 𝑚-dimensionality attribute vector. In addition, the graph 𝐺𝑡
can be represented by the adjacency matrix 𝐴𝑡 ∈ R|𝑡|×|𝑡|. Due to the
different structures and node attributes observed at each timestamp,
an adjacency matrix sequence 𝐴 = {𝐴1, 𝐴2,… , 𝐴𝑇 } and a node attribute
sequence 𝑋 = {𝑋1, 𝑋2,… , 𝑋𝑇 } are considered as inputs. The goal of our
task is to learn a mapping function 𝑓 from the historical 𝑇 observations
to predict the links in the graph at time 𝑇 + 1, i.e., 𝑇+1.

Note that  is an undirected graph, and we only consider changes
in the edge sets over time, i.e., we assume that all graph snapshots
have the same nodes, and |

|

𝑡
|

|

= 𝑁 . To simplify the input structure,
in practice, we convert the two-dimensional vector sequences of length
𝑇 into the three-dimensional tensors: 𝑋 ∈ R𝑇×𝑁×𝑚, 𝐴 ∈ R𝑇×𝑁×𝑁 .

3.2. Overall framework

Fig. 2 shows the overview of our proposed CTGNDE network frame-
work. The framework has four main components: input preprocessing,
spatial graph ODE, temporal graph ODE, and prediction. With a series
of graph snapshots, we first calculate the potential initial states of
the nodes in the graph snapshots using an encoder. Subsequently, our
spatial graph ODE captures rich continuous spatial structural features
from the graph snapshots through a two-stage process consisting of
feature propagation and feature transformation. Additional information
regarding this process is presented in Section 3.3. The extracted node
features obtained from the spatial graph ODE are then fed into the
temporal graph ODE, which aggregates temporal information and uses
an ODE solver to predict the potential future state of the nodes. This
process is described in detail in Section 3.4. Finally, the learned
node representation is utilized to predict the probability of future edge
connections. Section 3.5 delves into the details of model training and
3

algorithm utilized in our framework.
3.3. Spatial graph ODE

To effectively capture the complex structural information at each
timestep, we usually utilize spectral convolution to extract graph struc-
tural data and aggregate nodes’ neighbor information. The formula of
a typical GCN is as follows [20]:

𝐻(𝑙+1) = 𝜎
(

𝐷̂− 1
2 𝐴̂𝐷̂− 1

2 𝐻(𝑙)𝑊(𝑙)

)

, (1)

where 𝐻(𝑙) ∈ R𝑁×𝑚 denotes the node feature matrix at layer 𝑙; 𝐴̂ ∈
𝑁×𝑁 , the normalized adjacency matrix; 𝐷̂, the degree matrix; and
(𝑙) ∈ R𝑚×𝑚, the weight matrix for layer 𝑙. However, GCN introduces

omputational complexity due to the utilization of nonlinear activation
unctions and weight matrices at each layer to learn node represen-
ations. This complexity increases the computational burden. Drawing
nspiration from the success of the linear variant of GCN [15,30], given
n adjacency matrix 𝐴 and the initial feature 𝑋, a discrete dynamic
ormulation of the nodes in the 𝐾-th layer using the space-based
onvolution operation is defined as follows:
{

𝐻𝑘+1 = 𝐴̂ ×2 𝐻𝑘 +𝐻0, 𝑘 ∈ {0, 1,… , 𝐾 − 1},

𝐻̄𝐾 = 𝜎(𝐻𝐾 ×1 𝑊 ×3 𝛩),
(2)

here 𝐻̄𝐾 denotes the hidden representations of nodes at the 𝐾-th
ayer; 𝐴̂ ∈ R𝑇×𝑁×𝑁 , the normalized adjacency matrix; 𝛩 ∈ R𝑚×𝑚,

learnable weight matrix; and 𝑊 ∈ R𝑇×𝑇 , a trainable temporal
ransformation matrix. Furthermore, 𝐻0 = 𝑓 (𝑋) ∈ R𝑇×𝑁×𝑚 denotes
he initial nodes’ hidden embedded representation, which is obtained
y mapping the input series to the latent space with a neural network 𝑓 ;
, a nonlinear activation function such as ReLU; and ×𝑖, the summation
ver the 𝑖-th dimension of the tensor products by using the Einstein
ummation convention [29]. i.e., (𝐴̂ ×2 𝐻𝑘)𝑖𝑙𝑚 =

∑

𝑗 𝐴̂𝑖𝑗𝑙 ⋅ (𝐻𝑘)𝑖𝑗𝑚,
𝐻𝐾 ×1 𝑊 ×3 𝛩)𝑙𝑗𝑚 =

∑

𝑘(
∑

𝑖(𝐻𝐾 )𝑖𝑗𝑘 ⋅𝑊𝑖𝑙)𝑙𝑗𝑘 ⋅ 𝛩𝑘𝑚.
To effectively capture complex temporal and spatial dependencies,

e utilize the spatiotemporal tensors as inputs. It is important to note
he difference between the standard GCN and our proposed formula.
n each layer of GCN, the update of nodes is transformed through a
onlinear activation function. Different from the standard GCN, our
roposed formula divides the updating of node representation into
wo stages: feature propagation and feature transformation. During fea-
ure propagation, nodes directly update across multiple layers through
eighboring nodes, whereas in the subsequent feature transformation
tage, nonlinear activation operation is applied only once to the propa-
ated information. This not only eliminates the redundant nonlinearity
etween continuous layers but also compresses the weight matrix, re-
ulting in a simple yet effective model. By recursively applying Eq. (2),
e can effectively couple the temporal and structural information on

he dynamic graph through tensor multiplication.
The aforementioned feature propagation stage formula can be ex-

ressed as follows:

𝐾 =
𝐾−1
∑

𝑖=0
(𝐴̂𝑖 ×2 𝐻0). (3)

o extend Eq. (3) to a continuous form, we replace the discrete variable
with a continuous variable 𝑡. In this way, Eq. (3) can be viewed as a

iemann sum. The Riemann integral formulation is given as follows:

𝑡 = ∫

𝑡

0
𝐴̂𝑠 ×2 𝐻0d𝑠. (4)

ntuitively, we can obtain an ODE by taking the derivative,
d𝐻𝑡
d𝑡

= 𝐴̂𝑡 ×2 𝐻0. (5)

However, computing 𝐴̂𝑡 for 𝑡 ∈ R can be challenging. To simplify the
calculation, we consider the second-order ODE:

d2𝐻𝑡 = ln 𝐴̂ × 𝐴̂𝑡 × 𝐻 = ln 𝐴̂ ×
d𝐻𝑡 . (6)
d𝑡2 2 2 0 2 d𝑡
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Fig. 2. Overall framework of CTGNDE: first, we encode a series of historical observations 𝑋 through the encoder to obtain the potential initial state of the nodes in the graph.
Subsequently, we employ the spatial graph ODE to model the continuous spatial structural features. The red line denotes the feature transmission process and the gray curve denotes
the continuous hidden state of the nodes through the ODE solver. Subsequently, we construct a continuous path 𝑆 through interpolation and then employ the temporal graph ODE
to model the aggregation of continuous temporal information. Finally, leveraging the learned node representation, we make predictions regarding future link connections.
By integrating both sides of Eq. (6), we obtain:
d𝐻𝑡
d𝑡

= ln 𝐴̂ ×2 𝐻𝑡 + 𝑐𝑜𝑛𝑠𝑡. (7)

As for Eq. (4), we can evaluate it at 𝑡 = 1 as follows:

𝐻1 = ∫

1

0
𝐴̂𝑠 ×2 𝐻0d𝑠 =

𝐴̂ − 𝐼
ln 𝐴̂

×2 𝐻0. (8)

To solve for 𝑐𝑜𝑛𝑠𝑡, we combine Eqs. (5) and (7) by letting 𝑡 = 1:
d𝐻𝑡
d𝑡

|

|

|

|𝑡=1
= 𝐴̂ ×2 𝐻0 = ln 𝐴̂ ×2 𝐻1 + 𝑐𝑜𝑛𝑠𝑡. (9)

Thus, we have,

𝑐𝑜𝑛𝑠𝑡 = 𝐻0. (10)

The final ODE of Eq. (5) can be reformulated as,
d𝐻𝑡
d𝑡

= ln 𝐴̂ ×2 𝐻𝑡 +𝐻0. (11)

In practice, computing the matrix logarithm of 𝐴̂ can be computation-
ally expensive. Consequently, a first-order Taylor expansion is often
used as an approximation. In this case, we can express the continuous-
depth version of the feature propagation stage in Eq. (2) as an ODE,
which is given by,
d𝐻𝑡
d𝑡

=
(

𝐴̂ − 𝐼
)

×2 𝐻𝑡 +𝐻0. (12)

Up to this point, given the initial embedding representation 𝐻0 and
continuous variable 𝑡, the spatial structural representation updated in
Eq. (2) can be expressed as a spatial graph ODE in the following form:

⎧

⎪

⎨

⎪

⎩

𝐻𝑡 = ODESolve
(

d𝐻𝑡
d𝑡

,𝐻0, 𝑡
)

,

𝐻̄𝑡 = 𝜎(𝐻𝑡 ×1 𝑊 ×3 𝛩),
(13)

where the function ODESolve is a black-box differential equation solver
such as Euler or Runge–Kutta method employed to solve the ODE.
4

3.4. Temporal graph ODE

After capturing the spatial dependencies between nodes in the
network through Eq. (13), it is crucial to incorporate rich tempo-
ral information. Among the existing research endeavors, RNN models
have been extensively used to address time series-related challenges. A
standard RNN cell can be denoted as follows:

ℎ𝑡 = 𝑓𝜃
(

ℎ𝑡−1, 𝑥𝑡
)

, (14)

where 𝑥𝑡 denotes the input vector; ℎ𝑡, the hidden state vector; and 𝑓 , a
function incorporating the model parameter 𝜃. It is noteworthy that the
hidden state of the current timestep is not only dependent on the input
at that moment but also incorporates information from the hidden state
of the previous timestep.

Despite the time-dependent nature of RNN, it relies on discrete
timesteps to model time-series data sequentially, necessitating indi-
vidual computations for forward propagation and backpropagation.
Consequently, to enhance the flexibility, accuracy, and computational
efficiency of modeling sequence data, it becomes imperative to ex-
plore alternative approaches that leverage continuous timesteps for
modeling.

First, we draw a comparison between RNNs and differential equa-
tions. In particular, the state update mechanism of an RNN can be
seen as analogous to the state evolution in a differential equation. The
recursive connections in an RNN resemble the integral operation in a
differential equation, where the current state depends on the previous
state. Thus, we can draw a comparison between Eq. (14) and the
following explicit Euler discrete form [17]:

ℎ (𝑡) = ℎ (0) + ∫

𝑡

0

(

𝑓𝜃 (ℎ (𝑠), 𝑥 (𝑠)) − ℎ (𝑠)
)

d𝑠. (15)

In this case, the integrand in Eq. (15) can be regarded as a function
of ℎ (𝑠) and 𝑥 (𝑠). In accordance with a theorem presented by Kidger
et al. [17], it follows that ‘‘Any equation of the form 𝑧 = 𝑧 +
𝑡 0
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∫ 𝑡
𝑡0
ℎ𝜃(𝑧𝑠, 𝑋𝑠)d𝑠 may be represented exactly by a Neural CDE of the form

𝑡 = 𝑧0 + ∫ 𝑡
𝑡0
𝑓𝜃(𝑧𝑠)d𝑋𝑠. However the converse statement is not true’’.

onsequently, RNNs can be perceived as discrete Neural CDEs [23],
nd we consider capturing hidden states of continuous timesteps based
n Neural CDE.

Let 𝑓𝜃 ∶ R𝑁×𝑚 → R𝑁×𝑚×𝑑𝑆 be a neural network, where 𝑑𝑆 denotes
he dimension of the continuous path 𝑆. The Neural CDE [17] for the
ime aggregation process can be rewritten as follows:

(𝑇 ) = 𝑍 (0) + ∫

𝑇

0
(𝑓𝜃 (𝑍 (𝑡))) ⋅ d𝑆 (𝑡) , (16)

here 𝑍 (𝑡) ∈ R𝑁×𝑚 denotes the hidden trajectory of nodes (over time
∈ [0, 𝑇 ]) and is controlled by 𝑆. Here (𝑓𝜃 (𝑍 (𝑡))) ⋅ d𝑆 (𝑡) denotes
tensor–vector multiplication, and the integral d𝑆 (𝑡) is a Riemann–

tieltjes integral. 𝑆 ∶ [0, 𝑇 ] → R𝑑𝑆 denotes a continuous function of
bounded variation, which is a continuous path created from the spatial
information 𝐻̄𝑡 obtained using Eq. (13). Specifically, for 𝐻̄𝑡 ∈ R𝑇×𝑁×𝑚,
we split it into the observed value 𝑥𝑖 ∈ R𝑁×𝑚 at each timestamp
𝑡𝑖 ∈ R𝑇 , i.e., 𝐻̄𝑡 = {𝑥𝑖}

𝑡𝑇
𝑖=𝑡0

=
((

𝑡0, 𝑥0
)

,
(

𝑡1, 𝑥1
)

,… ,
(

𝑡𝑇 , 𝑥𝑇
))

, which
is a discrete data sequence. Subsequently, we interpolate this discrete
sequence using natural cubic splines to construct a continuous path
𝑆 [17], i.e.,

𝑆 (𝑡) =
𝑡𝑇
∑

𝑖=𝑡0

𝑆𝑖(𝑡) ⋅ 𝑥𝑖, (17)

where 𝑆𝑖(𝑡) is a cubic spline interpolation function of the time variable
𝑡.

Thus, we construct a continuous observation path 𝑆, which ap-
proximates the observed discretization process {𝑥𝑖}

𝑡𝑇
𝑖=𝑡0

. Using Eq. (16),
we model in the way of continuous time and finally extract the con-
tinuous hidden state containing rich temporal information. Compared
with standard RNNs, this continuous hidden state better captures the
dynamic evolution and long-term dependence of data, making the mod-
eling of sequence data more accurate and stable. Furthermore, due to
the use of Riemann–Stieltjes integration and interpolation in Eq. (16),
the hidden state at the previous timestamp will change dynamically
with the input data at the current timestamp [17], but the hidden state
obtained by RNNs will not change with the input data, indicating that
our model is more flexible. In addition, the forward propagation process
in RNN can be regarded as the initial value problem of Eq. (16) to
solve the differential equation. The temporal graph ODE is expressed
as follows:

⎧

⎪

⎨

⎪

⎩

d𝑍 (𝑡)
d𝑡

= (𝑓𝜃 (𝑍 (𝑡))) ⋅
d𝑆 (𝑡)
d𝑡

,

𝑍 (𝑡) = ODESolve
(

d𝑍 (𝑡)
d𝑡

, 𝑍 (0), 𝑡
)

,
(18)

where 𝑍(0) is created from 𝐻̄ in Eq. (13) at timestamp 𝑡0. For simplic-
ity, we define 𝑓 as a Multilayer Perceptron(MLP).

3.5. Model training

By coupling the spatial graph ODE of Eq. (13) with the tempo-
ral graph ODE of Eq. (18), we obtain the fully continuous under-
lying spatiotemporal dynamics. Finally, we obtain the learned node
representation 𝑦 by designing an MLP as the output layer.

To complete the task of link prediction, we need to use the historical
information of nodes 𝑢 and 𝑣 to determine whether there is an edge
(𝑢, 𝑣) at time 𝑇 + 1. By capturing the node representation 𝑦𝑇+1 at time
𝑇 + 1 through CTGNDE, we can easily obtain 𝑦𝑢𝑇+1 and 𝑦𝑣𝑇+1 and then
concatenate the two node representations to obtain the link probability.
We regard link prediction as a binary classification problem and select
cross entropy loss as the loss function of model training:

 = −
∑

(

𝑦𝑙 log(𝑝𝑙) + (1 − 𝑦𝑙) log(1 − 𝑝𝑙)
)

, (19)
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𝑙∈𝐸𝑇+1
Algorithm 1 The Continuous Temporal Graph Neural Differential
Equation Network Algorithm

Input: Node feature sequences 𝑋 = {𝑋1, 𝑋2,… , 𝑋𝑇 }, adjacency matrix
sequences 𝐴 = {𝐴1, 𝐴2,… , 𝐴𝑇 }, input length 𝑇 , model depth 𝐾,
predicted link set 𝐸𝑇+1.
Output: Prediction result.
1: 𝐻0 ← Encoder(𝑋);
2: 𝐴̂ ← adj_norm(𝐴);
3: 𝐻𝐾 ← ODESolver(𝐻0,

d𝐻𝑡
d𝑡 , 𝐾); ⊳ The ODE function defined in Eq.

(12)
4: 𝐻̄𝐾 ← Trans(𝐻𝐾 ); ⊳ The feature transformation defined in Eq. (13)
5: {𝑥𝑖}

𝑡𝑇
𝑖=𝑡0

, 𝑍𝑡0 ← 𝐻̄𝐾 ;
6: 𝑆(𝑡) ← Interp(𝑥𝑖); ⊳ Construct a continuous path
7: 𝑍𝑇+1 ← ODESolver(𝑍𝑡0 ,

d𝑍𝑡
d𝑡 , 𝑇 + 1); ⊳ The ODE function defined in

Eq. (18)
8: 𝑦𝑇+1 ← Decoder(𝑍𝑇+1); ⊳ Update node representation
9: for 𝑙 ∈ 𝐸𝑇+1 do

10: Update the edge representation 𝑦𝑙𝑇+1 from 𝑦𝑇+1;
11: Calculate the link probability 𝑝𝑙 based on 𝑦𝑙𝑇+1;
12: end for

Table 1
Statistics of the datasets used in the experiments.

Datasets #Nodes #Edges #Avg.Degree #TimeSpan(days)

Ia-Enron 151 50 572 669.8 1137
Ia-Contact 274 28 244 206.2 4
Fb-Forum 899 33 720 75.0 164
Email-Eu 986 332 334 674.1 803
Email-DNC 1891 39 264 41.5 982
UCI 1899 59 835 63.0 196
SO 3262 13 077 8.0 36
BC-Alpha 3783 24 186 12.8 1901
BC-OTC 5881 35 592 12.1 1904
Wikipedia 9227 157 474 34.1 30

where 𝐸𝑇+1 is the set of links to be predicted, which includes the
existing target links 𝑇+1 and random samples of the same number
f nonexistent links. 𝑝𝑙 is the probability of the existence of link 𝑙
redicted by the model, and 𝑦𝑙 ∈ {0, 1} is the real label of the link
ndicating whether the link exists or not. The pseudocodes of CTGNDE
re illustrated in Algorithm 1.

. Experiment

In this section, we conduct empirical experiments using a diverse
ange of 10 distinct datasets to assess the efficacy of our proposed
odel, CTGNDE, in the context of the link prediction task.

.1. Datasets

We conducted the experiments using the following 10 real-world
etwork datasets. The specific characteristics and details of these
atasets are presented in Table 1.

• Ia-Enron-Employees1 (Ia-Enron): An email communication net-
work among Enron employees, with nodes representing indi-
vidual employees and edges denoting email exchanges between
them. We aim to predict the monthly email traffic between the
employees.

• Ia-Contact2: A social network comprises nodes representing
unique individuals, with edges indicating the connections or

1 https://networkrepository.com/ia-enron-employees.php
2 https://networkrepository.com/ia-contact.php

https://networkrepository.com/ia-enron-employees.php
https://networkrepository.com/ia-contact.php
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relationships between them. We aim to predict changes in inter-
personal relationships.

• Fb-Forum3: A network dataset derived from Facebook forums.
Nodes represent users, whereas edges represent their interactions.
We use it to predict changes in user interaction over a 2-day
period.

• Email-Eu-Core4 (Email-Eu): An email communication network
within a European research institution. Nodes represent institu-
tion members, and edges indicate email exchanges between them.
We use this dataset to predict fortnightly mail traffic between
institution members.

• Email-DNC5:A network of email communications in the 2016
Democratic National Committee email leak. Nodes represent per-
sons in the datasets and edges denote email exchanges between
them. We aim to make predictions about email delivery on this
dataset.

• UC Irvine messages6 (UCI): A social network of online posts by
students from the University of California, Irvine. Nodes represent
students, and edges indicate social connections between them. We
utilize this dataset to predict the interactions between students.

• SO7:A collaboration network where nodes represent Stack Over-
flow users and the edge represents comments from one user to
another. We use it to predict interactions between users.

• Bitcoin Alpha8 (BC-Alpha): A who-trusts-whom network among
bitcoin users trading on the Alpha platform. Nodes represent
users, and edges denote trust relationships, quantified by user
ratings on a scale ranging from −10 (total distrust) to +10 (total
trust). We use this dataset to determine whether one user will rate
another at the next time.

• Bitcoin OTC9 (BC-OTC): Another who-trusts-whom network
among bitcoin users trading on the OTC platform, similar to the
BC-Alpha dataset.

• Wikipedia10: A dataset of wiki page edits spanning a month. Each
node represents either a user or an edited page, and edges denote
interactions between users and the pages they edit. We utilize this
dataset to predict the daily user interactions with the pages.

.2. Baselines

We conducted a comparative analysis between our proposed method
nd several state-of-the-art graph-based neural network models, includ-
ng the following:

• GCN [20]: A convolutional neural network designed for process-
ing graph-structured data. GCN operates on static graphs and
utilizes node features to propagate and aggregate information by
learning the neighboring relationships between nodes.

• GraphSage [31]: A method specifically designed for represen-
tation learning in large-scale graph-structured data. GraphSage
employs neighbor sampling and feature aggregation techniques
to learn expressive node representations.

• EvolveGCN [12]: A dynamic graph neural network capable of
effectively handling evolving graph data. EvolveGCN addresses
changes in graph structure by incrementally updating the param-
eters of the graph convolutional layers over time. It offers two
variants: EvolveGCN-H, which uses GRU for dynamic modeling,
and EvolveGCN-O, which uses LSTM for the same purpose.

3 https://networkrepository.com/fb-forum.php
4 http://snap.stanford.edu/data/email-Eu-core.html
5 https://networkrepository.com/email-dnc.php
6 http://konect.cc/networks/opsahl-ucsocial/
7 https://archive.org/details/stackexchange
8 http://snap.stanford.edu/data/soc-sign-bitcoin-alpha.html
9 http://snap.stanford.edu/data/soc-sign-bitcoin-otc.html

10
6

http://snap.stanford.edu/jodie/wikipedia.csv
• CGNN [18]: A continuous neural network designed to handle
graph-structured data, wherein it uses ODEs to establish continu-
ous and dynamic representations of nodes. This approach enables
the network to effectively capture temporal dependencies and
evolving patterns within the graph, facilitating comprehensive
and continuous learning of node representations.

• NCDE [17]: A framework that empowers continuous-time mod-
eling while leveraging neural networks for dynamic evolution.
Neural CDE exhibits flexibility for capturing nonlinear temporal
patterns and handling irregular time intervals and missing data.

• DGCN [32]: An innovative approach for learning dynamic graph
representations based on the GCNs. This method incorporates
LSTM to dynamically update the weight parameters of the GCN,
effectively capturing the comprehensive global structural insights
across all temporal stages of the dynamic graph.

• SRG [33]: A novel approach to deep generative modeling. This
method combines the concept of super-resolution with condi-
tional normalizing flows, capturing intricate temporal patterns
within the evolving graph data to enhance the granularity of link
prediction.

• CTGNDE variants: CTGNDE-discrete integrates the discrete gra-
ph propagation process outlined in Eq. (2) with the discrete
temporal information aggregation process described in Eq. (14)
for node representation learning. We compare it with CTGNDE-
GCN, which combines GCN and Eq. (14) for node representation
learning.

4.3. Experimental settings

In our experimental setup, we partitioned each dataset into training,
validation, and test sets in a ratio of 70%, 15%, and 15%, respectively.
Furthermore, during training and testing, we randomly selected an
equal number of nonexistent links as negative samples from the dataset.
The model was trained on the training set, and the best performing
model on the validation set was selected for evaluation on the test set.

To assess the performance of different models, we used two rep-
resentative evaluation metrics: the area under the receiver operating
characteristic curve (AUC) and the average precision (AP). Each dataset
was trained for 100 epochs, and we conducted 5 independent experi-
ments, randomly dividing the dataset each time, to mitigate bias and
obtain average values with standard derivation.

During the experiments, we set the batch size to 8, used the Adam
optimizer to optimize the loss function, and assigned a learning rate of
0.002.

We used Python 3.8.10, PyTorch 1.12.1, PyG 2.2.0, and CUDA 12.0
as the computing environment. We executed the CTGNDE model and
other comparative methods on our workstation, which featured two
Intel(R) Xeon(R) Platinum 8255C 2.50 GHz CPUs and four NVIDIA RTX
2080 Ti GPUs.

4.4. Experimental results and analysis

1. Comparison Results. In this section, we conduct experiments
sing our proposed approach and baseline approaches on 10 datasets.
e use different evaluation metrics to compare the performance of each
odel. Table 2 presents the AP scores obtained using different methods

n each dynamic network, whereas the corresponding AUC scores are
resented in Table 3. The performance of our model is derived when
he spatial aggregation depth 𝐾 is set to 6, and based on these results,
e make the following observations.

On the one hand, CTGNDE consistently outperforms all the baseline
ethods across all 10 datasets. Compared with the baseline methods,

he CTGNDE model demonstrates an average increase in AP scores of
pproximately 2.8% and AUC values of around 2.7%. In particular, in
he BC-Alpha and BC-OTC datasets, our model surpasses the AP and
UC scores of all the other models by more than nearly 5%. In general,

https://networkrepository.com/fb-forum.php
http://snap.stanford.edu/data/email-Eu-core.html
https://networkrepository.com/email-dnc.php
http://konect.cc/networks/opsahl-ucsocial/
https://archive.org/details/stackexchange
http://snap.stanford.edu/data/soc-sign-bitcoin-alpha.html
http://snap.stanford.edu/data/soc-sign-bitcoin-otc.html
http://snap.stanford.edu/jodie/wikipedia.csv
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Table 2
AP (%) comparison of our method and baselines. The best-performing methods are bold faced, and the runner-ups are underlined. ⋆ SRG ran out of memory on SO, BC-Alpha,
BC-OTC and Wikipedia.

Methods Ia-Enron Ia-Contact Fb-Forum Email-Eu Email-DNC UCI SO BC-Alpha BC-OTC Wikipedia
GCN 79.23 ± 0.75 86.48 ± 1.63 75.57 ± 0.37 85.16 ± 0.71 93.72 ± 0.32 76.52 ± 0.43 78.08 ± 0.78 85.60 ± 0.69 86.90 ± 0.45 91.21 ± 0.17
GraphSage 79.29 ± 1.41 86.91 ± 0.59 80.63 ± 0.41 88.05 ± 1.56 93.47 ± 0.13 81.54 ± 0.48 78.31 ± 0.55 87.73 ± 0.66 88.82 ± 0.22 90.69 ± 0.31
EvolveGCN-H 76.11 ± 1.03 85.46 ± 1.33 70.64 ± 0.61 83.54 ± 0.44 91.92 ± 0.74 73.22 ± 0.96 75.93 ± 1.62 86.31 ± 1.10 86.69 ± 0.59 87.95 ± 1.05
EvolveGCN-O 75.43 ± 0.93 84.45 ± 1.80 71.40 ± 0.72 83.65 ± 0.98 92.30 ± 0.55 73.28 ± 0.98 76.13 ± 1.48 84.96 ± 0.92 86.55 ± 0.72 89.00 ± 0.59
CGNN 46.21 ± 1.83 85.11 ± 0.35 77.11 ± 0.27 87.66 ± 0.63 89.91 ± 0.25 75.57 ± 0.25 64.21 ± 0.08 81.68 ± 0.18 82.63 ± 0.26 88.95 ± 0.16
NCDE 60.47 ± 4.02 91.75 ± 1.83 80.97 ± 0.72 82.94 ± 0.51 89.44 ± 2.30 74.94 ± 1.43 77.73 ± 2.09 73.59 ± 3.04 73.13 ± 1.69 90.27 ± 1.21
DGCN 77.12 ± 0.44 95.37 ± 0.28 81.65 ± 0.17 83.43 ± 0.24 94.16 ± 0.19 87.07 ± 0.12 84.85 ± 0.29 88.71 ± 0.14 88.00 ± 0.21 86.96 ± 0.23
SRG⋆ 83.66 ± 0.75 95.37 ± 0.22 90.97 ± 0.74 88.17 ± 3.63 89.21 ± 1.30 70.70 ± 1.84 – – – -
CTGNDE-discrete 70.50 ± 1.09 96.95 ± 0.10 83.67 ± 0.54 88.36 ± 0.84 93.92 ± 0.46 74.94 ± 0.22 81.17 ± 0.80 69.41 ± 0.74 79.38 ± 0.37 91.15 ± 0.05
CTGNDE-GCN 74.44 ± 2.80 96.59 ± 0.80 84.51 ± 0.54 84.90 ± 1.36 93.69 ± 1.04 76.34 ± 1.39 81.03 ± 0.87 75.23 ± 4.44 81.91 ± 3.68 92.94 ± 0.47

CTGNDE 𝟖𝟒.𝟗𝟑 ± 𝟏.𝟕𝟕 𝟗𝟕.𝟎𝟖 ± 𝟎.𝟏𝟖 𝟗𝟏.𝟑𝟎 ± 𝟎.𝟓𝟑 𝟖𝟗.𝟖𝟔 ± 𝟎.𝟖𝟐 𝟗𝟔.𝟔𝟓 ± 𝟎.𝟐𝟕 𝟗𝟎.𝟗𝟐 ± 𝟎.𝟔𝟒 𝟖𝟖.𝟎𝟕 ± 𝟎.𝟑𝟖 𝟗𝟑.𝟕𝟕 ± 𝟎.𝟕𝟓 𝟗𝟑.𝟓𝟐 ± 𝟎.𝟓𝟑 𝟗𝟒.𝟕𝟏 ± 𝟎.𝟐𝟐
Table 3
AUC (%) comparison of our method and baselines. The best-performing methods are bold faced, and the runner-ups are underlined. ⋆ SRG ran out of memory on SO, BC-Alpha,
BC-OTC and Wikipedia.

Methods Ia-Enron Ia-Contact Fb-Forum Email-Eu Email-DNC UCI SO BC-Alpha BC-OTC Wikipedia
GCN 78.35 ± 0.42 86.75 ± 1.62 75.32 ± 0.21 86.08 ± 0.48 93.12 ± 0.49 76.38 ± 0.27 77.65 ± 0.96 85.28 ± 1.07 86.15 ± 0.91 91.72 ± 0.20
GraphSage 80.94 ± 0.59 87.98 ± 0.36 79.66 ± 0.19 89.00 ± 0.76 93.22 ± 0.19 80.98 ± 0.28 78.16 ± 0.59 87.57 ± 0.53 88.64 ± 0.47 92.62 ± 0.40
EvolveGCN-H 74.04 ± 0.40 85.31 ± 1.26 71.10 ± 0.65 82.74 ± 0.42 91.32 ± 1.11 74.20 ± 0.88 77.02 ± 1.55 87.90 ± 1.07 87.40 ± 0.83 88.29 ± 1.02
EvolveGCN-O 73.13 ± 0.85 83.60 ± 2.11 71.48 ± 0.45 82.66 ± 0.55 91.67 ± 0.59 73.11 ± 1.15 76.48 ± 2.88 84.71 ± 1.32 85.63 ± 1.13 89.81 ± 0.48
CGNN 41.53 ± 3.79 82.92 ± 0.37 74.04 ± 0.15 86.37 ± 0.33 88.90 ± 0.16 72.33 ± 0.30 62.24 ± 0.21 81.83 ± 0.07 82.70 ± 0.18 88.11 ± 0.12
NCDE 60.23 ± 3.20 94.22 ± 0.70 80.90 ± 0.42 84.38 ± 0.90 90.51 ± 1.70 72.86 ± 1.47 73.64 ± 1.85 70.45 ± 3.50 72.94 ± 1.24 90.78 ± 1.45
DGCN 78.78 ± 0.32 96.10 ± 0.22 81.58 ± 0.15 86.80 ± 0.17 94.09 ± 0.22 87.03 ± 0.11 84.54 ± 0.18 88.91 ± 0.14 88.17 ± 0.20 87.89 ± 0.13
SRG⋆ 81.94 ± 0.91 95.89 ± 0.63 90.07 ± 0.44 87.32 ± 2.94 87.10 ± 1.85 68.37 ± 2.43 – – – -

CTGNDE-discrete 70.04 ± 1.32 97.37 ± 0.08 83.59 ± 0.43 88.43 ± 0.36 92.81 ± 0.52 73.14 ± 0.32 75.94 ± 0.75 63.17 ± 0.62 74.18 ± 0.41 90.95 ± 0.07
CTGNDE-GCN 75.59 ± 2.15 97.27 ± 0.62 84.98 ± 0.58 85.96 ± 1.04 93.76 ± 0.94 74.84 ± 1.59 75.88 ± 0.51 69.86 ± 6.43 78.41 ± 4.58 94.12 ± 0.36

CTGNDE 𝟖𝟓.𝟗𝟑 ± 𝟏.𝟒𝟐 𝟗𝟕.𝟔𝟎 ± 𝟎.𝟐𝟎 𝟗𝟏.𝟏𝟏 ± 𝟎.𝟕𝟐 𝟗𝟏.𝟒𝟗 ± 𝟎.𝟗𝟒 𝟗𝟔.𝟑𝟔 ± 𝟎.𝟑𝟔 𝟗𝟎.𝟒𝟑 ± 𝟎.𝟓𝟑 𝟖𝟓.𝟒𝟔 ± 𝟎.𝟒𝟏 𝟗𝟑.𝟎𝟖 ± 𝟎.𝟓𝟑 𝟗𝟐.𝟓𝟗 ± 𝟎.𝟔𝟏 𝟗𝟓.𝟓𝟗 ± 𝟎.𝟐𝟎
these results visually highlight the efficacy of CTGNDE in tasks related
to dynamic link prediction. Furthermore, they provide robust evi-
dence supporting the notion that neural differential equations provide
a superior choice for modeling continuously evolving spatiotemporal
features. In addition, it is worth mentioning that while SRG exhibited
competitive performance on the initial four datasets, the reliance of its
design on transformations between adjacency matrices led to a critical
drawback: the requirement for significantly larger storage space. This
limitation restricts the applicability of the SRG solely to small-scale data
scenarios.

On the other hand, our model outperforms the discrete variants of
CTGNDE (CTGNDE-discrete and CTGNDE-GCN) on all datasets. This
suggests that the two graph ODEs we have continuously designed are
more effective in capturing dynamic changes in node representations,
leading to improved prediction accuracy. Consequently, these results
further substantiate the advantages of the continuous dynamic graph
network structure of CTGNDE, which is based on neural differential
equations.

2. Statistical Test. To comprehensively assess and contrast the
efficacy of CTGNDE against baseline models, we conduct statistical
analyses to ascertain if CTGNDE exhibits superior performance. Specif-
ically, we employ the Friedman test [34] to determine whether sig-
nificant differences exist in the performance across a set of models,
assuming the null hypothesis that all models demonstrate equivalent
performance. Furthermore, if the null hypothesis of the Friedman test is
rejected, the Bonferroni–Dunn test [34] is further applied to determine
whether a significant difference exists between the performances of
CTGNDE and other models within the comparative set.

According to the comparison results presented in Tables 2 and 3,
we select results from six datasets, Ia-Enron, Ia-Contact, Fb-Forum,
Email-Eu, Email-DNC, and UCI, to provide support for our study.
Moreover, statistical tests are conducted in the four best-performing
models: CTGNDE, SRG, DGCN, and GraphSage. These tests are based on
the rankings of the models, which are determined by their performance
on each dataset as measured by a specific metric. For example, when
using the AP score as the evaluation metric on the Ia-Contact dataset,
the rankings of CTGNDE, SRG, DGCN, and GraphSage are 1, 2, 3, and
4, respectively. Based on the above description, with the significance
7

Fig. 3. Results of the statistical test. Label I shows the result of the Friedman test,
including 𝜒2 statistics and the corresponding 𝑝-value. Meanwhile, label II illustrates the
critical difference diagram derived from the Bonferroni–Dunn test, where the critical
difference(CD) is marked in blue, and the average rank of each model is highlighted
in red.

level 𝛼 set to 0.05, the results of the Friedman and Bonferroni–Dunn
tests are presented in Fig. 3.

The results show a 𝑝-value of 5.6𝑒 − 5 obtained from the Friedman
test, which is substantially smaller than the predetermined significance
level 𝛼. This discrepancy prompts the rejection of the null hypothesis,
indicating that the four models exhibit distinct performance levels.
Upon further comparison using the Bonferroni–Dunn test, it is observed
that the average rankings of CTGNDE, SRG, DGCN, and GraphSage
are 1, 2.833, 2.917, and 3.25, respectively, indicating that CTGNDE
outperforms the other models. Furthermore, the critical difference (CD)
obtained from the Bonferroni–Dunn test is 1.03021. Notably, the dif-
ference between the average ranking of CTGNDE and other models
exceeds this CD. This implies that significant differences exist between
CTGNDE and the other models, thereby establishing the superiority of
CTGNDE over the baseline models.

3. Complexity Analysis. The computational complexity of our pro-
posed CTGNDE is mainly determined by the construction of the spatial
graph ODE component and temporal graph ODE component. We denote
𝑁 , 𝑚, 𝐾, and 𝑆 as the number of nodes, feature dimensions, spatial
aggregation depth, and continuous path dimensions, respectively. For
each timestamp, the time complexity of the feature propagation stage
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Fig. 4. Results of ablation experiments conducted on all 10 datasets.
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n the spatial graph ODE, as presented in Eq. (12), is (𝐾𝑁2 +𝐾𝑁𝑚),
nd the computational complexity of the feature nonlinear activation
s (𝑁𝑚 +𝑁𝑚2) = (𝑁𝑚2). Consequently, the time complexity of the
roposed spatial graph ODE component is (𝐾𝑁2 + 𝐾𝑁𝑚 + 𝑁𝑚2).
imilarly, considering the temporal aggregation expressed in Eq. (18),
he computational complexity of the temporal graph ODE component
s (𝑁𝑚𝑆 + 𝑁𝑚) = (𝑁𝑚𝑆). Based on our empirical observations, 𝑚,
, and 𝑆 are generally smaller than 𝑁 , and we assume that 𝑚 ≥ 𝑆.
hus, the overall computational complexity of CTGNDE is (𝐾𝑁2 +
𝑚2). Compared with SRG and DGCN, where SRG exhibits a time

omplexity exceeding (96𝑁3) [33] and the overall time complexity
f DGCN is (|𝐸|𝑐𝑎𝑣𝑔 log 𝑐𝑎𝑣𝑔) [32], our proposed method CTGNDE
emains competitive in terms of computational costs.

.5. Ablation study

To further validate the effectiveness of the various modules within
he CTGNDE model, we designed the following six variants of CTGNDE.

• CTGNDE without 𝑯𝟎 (w/o 𝐻0) removes the initial embedding
state during the spatial graph ODE procedure as indicated in
Eq. (12).

• CTGNDE without 𝑾 (w/o 𝑊 ) only considers the aggregation of
neighbor structural information in the spatial graph ODE mod-
ule and neglects the alteration of temporal features outlined in
Eq. (13).

• CTGNDE without spatial graph ODE (w/o SGODE) eliminates
the spatial graph ODE module, limiting the model to exclusively
perform temporal information aggregation based on Eq. (18).

• CTGNDE without temporal graph ODE (w/o TGODE) excludes
the temporal graph ODE module, and this variant only relies on
Eq. (13) for link prediction.

• CTGNDE with discrete spatial graph ODE (with SGODE-dis-
crete), instead of Eq. (13), this variant uses Eq. (2) to discretize
the spatial graph ODE process.

• CTGNDE with discrete temporal graph ODE (with TGODE-
discrete) replaces the continuous temporal graph ODE procedure
with the discrete RNN of Eq. (14).

We conducted comprehensive ablation studies on all datasets, and
he results are shown in Fig. 4. It clearly indicates that CTGNDE
utperforms its variants in terms of both AP and AUC. The results not
nly unequivocally affirm the validity of each component within our
esigned model but also clearly indicate the outstanding effectiveness
8

f CTGNDE across diverse datasets, thereby emphasizing the enhanced
apability of spatial and temporal graph ODEs in capturing intricate
patiotemporal information within dynamic networks. In addition, the
xperimental analysis involving different variants of CTGNDE reaffirms
he strong interdependence of temporal and spatial characteristics,
s disregarding any module (e.g., w/o 𝑊 ) diminishes the predictive
apacity of CTGNDE. Moreover, compared with our proposed CTGNDE,
he discrete variant model exhibits inferior performance, which is
ttributable to the continuous model structure we devised based on
eural differential equations, enabling it to capture continuous hidden
tate trajectories and thereby improving prediction accuracy.

.6. Continuous vs. Discrete

To further validate the effectiveness of the continuous structure of
he CTGNDE and assess the robustness of the model through experi-
ents, we defined two variants of CTGNDE as described in Section 4.2:
TGNDE-discrete and CTGNDE-GCN. Subsequently, we compared the
erformance of CTGNDE and its variants at different depths of the
odel structure (i.e., different values of 𝑡 in Eq. (13)), and the results

re depicted in Fig. 5.
The observation results indicate that our proposed CTGNDE consis-

ently outperforms its variants on all datasets across different depths of
he model structure. This clearly indicates that the continuous model
e designed exhibits higher prediction accuracy than the discrete
odel. In addition, although CTGNDE-discrete performs worse than
TGNDE-GCN on most datasets, the stability of CTGNDE-GCN de-
reases as the depth of the model structure increases. Notably, on the
C-Alpha and BC-OTC datasets, the performance of CTGNDE-GCN sub-
tantially drops, whereas the performances of CTGNDE and CTGNDE-
iscrete remain stable. This stability is achieved by avoiding parameter
ayering, thereby eliminating redundant trainable parameters and en-
ancing the stability of the model. These results also indicate the
obustness of our CTGNDE model in mitigating the problem of over-
moothing.

Furthermore, we compared the parametric efficiency of CTGNDE
ith its discrete variant, as represented by the dashed line in Fig. 5.
verall, CTGNDE has fewer and constant parameters than CTGNDE-
CN, resulting in lower computational overhead. Although CTGNDE
as slightly more parameters than CTGNDE-discrete, the improved AUC
core confirms the negligible increase in parameter count. In summary,
ompared with discrete methods, the continuous approach of CTGNDE
rovides higher prediction accuracy while exhibiting better parametric
fficiency.
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Fig. 5. AUC comparison and model parameters on all 10 datasets using different model depths.
Fig. 6. Performance comparison across various timestep sizes on the Fb-Forum and
UCI datasets.

4.7. Parameter analysis

As the choice of historical observation length 𝑇 significantly influ-
nces the extracted features for link prediction, we investigated the
ensitivity of hyperparameter 𝑇 within the context of the CTGNDE
odel. This empirical analysis was conducted on both the Fb-Forum

nd UCI datasets, and the results are graphically represented in Fig. 6.
Based on the observations presented in Fig. 6, it becomes evident

hat both the AUC and AP scores exhibit a noticeable stability with
inor fluctuations within a specific range of increasing timesteps.
his empirical evidence suggests that a moderate augmentation of the
istorical observation timestep can enhance the performance of the
odel. It can also be observed that even if there are fluctuations in the
erformance of the model with historical timesteps between 3 and 9,
he difference in performance compared with the optimal performance
odel is minimal throughout the process. In the case of social network
atasets such as Fb-Forum and UCI, this observation might be because
hey focus more on short-term social changes and are less influenced
y long-term trends. Consequently, a relatively small value of the
istorical observation length, such as 3, is sufficient to achieve results
omparable to those of the optimal performance model.

In a comprehensive assessment, optimal performance on the Fb-
orum dataset is achieved with a historical observation length of 7,
hereas for the UCI dataset, the peak performance is manifested at
historical observation length of 9. Furthermore, it is crucial to em-

hasize that a noteworthy decline in performance is observed beyond
9

Fig. 7. t-SNE visualization on the Fb-Forum and UCI datasets.

a timestep of 10 for the Fb-Forum dataset and 9 for the UCI dataset.
This phenomenon may be attributed to an excessive extraction of
historical timestamp data, which introduces elevated noise into the
informational context, consequently impeding further enhancements
in performance. Further investigation is imperative to gain a more
comprehensive insight into this identified phenomenon.

4.8. Visualization analysis

To obtain a better illustration of the performance of our proposed
CTGNDE, we conducted a visualization analysis using the learned node
pair representations. These representations were extracted from the
trained CTGNDE and used as features for each edge. Subsequently, we
projected these edge features into a two-dimensional space using the
t-distributed Stochastic Neighbor Embedding (t-SNE) technique [35].
ln our analysis, we compared CTGNDE with GCN and CGNN using the
Fb-Forum and UCI datasets. Fig. 7 presents the visualization results
for 15% test edges, where positive links are represented in pink and

negative links in blue.
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Fig. 8. Case studies on different dynamic networks. Subfigures (a) and (b) correspond to the network graphs of Ia-Enron and Email-Eu, respectively. For each subfigure, label I
shows the ground truth network, whereas label II displays the predicted network. Furthermore, correctly predicted edges are highlighted in green, whereas inaccurately predicted
edges are marked in red.
Notably, regardless of the dataset Fb-Forum or UCI, it is evident
from the visualization results that the edge features learned by CTGNDE
can effectively determine whether a link is connected. Furthermore, to
evaluate the classification performance, we employed contour coeffi-
cients to measure the intracluster distances and intercluster distances.
For the Fb-Forum dataset, the contour coefficients of CTGNDE, CGNN,
and GCN were calculated as 0.4220, 0.3670, and 0.3769, respectively.
Similarly, for the UCI dataset, the contour coefficients of CTGNDE,
CGNN, and GCN were computed as 0.4067, 0.3519, and 0.3756, re-
spectively. These results provide additional evidence supporting the
superior predictive ability of CTGNDE in representing edge features.

4.9. Case study

To further investigate how the CTGNDE model benefits the link
prediction task, we demonstrate two detailed case studies on the Ia-
Enron and Email-Eu datasets, as illustrated in Fig. 8. As can be seen
from the figure, the real email communication network shows the
presence of multiple local tree structures, which is similar to the com-
munication patterns between department heads and members within
the research institution. Compared with both the ground-truth and pre-
dicted network, our model demonstrates effective accuracy in predict-
ing email exchanges based on historical data. Particularly noteworthy
are cases where predictions deviate from actual results; in such cases,
the two connected nodes tend to exhibit a substantial distance from
each other on the network, indicating a greater spatial separation. This
phenomenon is analogous to the research institution connecting two
noncommunicating interdepartmental members for a transaction, thus
providing results that are consistent with realistic scenarios and are
easily interpretable.

To more clearly illustrate the efficacy of CTGNDE in predicting links
with precision, we further used the heat maps of adjacency matrices
10
Fig. 9. Subfigures (a) and (b) correspond to the adjacency matrices of the ground truth
and the prediction result in Ia-Enron, respectively.

on the Ia-Enron dataset, as depicted in Fig. 9. As our approach relies
on negative sampling for link prediction, to determine which samples
we choose to predict, we set −1 as the element value to represent
the unpredicted links in the adjacency matrix, visualized in black on
the heat map. In addition, the color intensity reflects the probability
of link existence, where closer to dark red means lower probability
and closer to white indicates higher probability. Comparing Figs. 9(a)
and 9(b), the proposed CTGNDE consistently demonstrates improved
accuracy in predicting link probabilities, regardless of positive or neg-
ative samples. This capability provides valuable insights into spam
interception. This case highlights the effectiveness of our model in cap-
turing spatiotemporal information, contributing to its robust prediction
performance.

5. Conclusion

In this work, our primary focus lies in addressing the task of link
prediction in dynamic networks. While numerous existing methods
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have achieved impressive results in link prediction by leveraging deep
learning techniques, their reliance on discrete neural network architec-
tures hinders their prediction capabilities and computational efficiency.
Recognizing these limitations, we introduced a novel temporal link
prediction model named CTGNDE, which leverages neural differential
equations. CTGNDE encompasses two differential equations, allowing
for the capture of both graph structural information and temporal
aggregation features. By adopting a continuous approach, the model
effectively captures the dynamic trajectories of hidden states. Our em-
pirical evaluation conducted on 10 publicly available datasets indicates
the superior performance of our proposed method compared with all
baseline approaches. We also confirmed the statistical significance of
the performance of CTGNDE over the baseline model. Furthermore, our
results provide additional evidence supporting the enhanced predic-
tion accuracy and lower computational overhead offered by CTGNDE
contrary to discrete methods. In addition, we further validated the
effectiveness of CTGNDE through case studies, affirming its potential
as a valuable tool in link prediction tasks for dynamic networks.

In our future research endeavors, we will focus on achieving more
accurate node feature representations for the task of dynamic graph
link prediction. Our future efforts will be directed to two primary
areas. First, we aspire to augment the capabilities of the CTGNDE
model to accommodate nodes that evolve over time within dynamic
graphs. Second, we will explore the expansion of our model to handle
weighted dynamic link prediction. Through these works, we aim to de-
rive superior-quality low-dimensional representations of nodes, thereby
enhancing the overall effectiveness of our link prediction methodolo-
gies. As noted in Section 4.7 the performance of the model experiences
a significant decline when the historical observation timestep exceeds
10. This phenomenon also requires to further scholarly investigation.
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